Accurate. Reliable. Cost Effective. missions Monitoring for Compliance & Process Improvement ## **SCR NOx Monitor - Model 8000 Low Dilution Probe** ### **Technology** Cemtek has brought proven Silicon Photodiode Sensor Technology together with a unique low-dilution probe measurement technique. The result is a compact and rugged close-coupled probe system for process control measurement of NO_x (Chemiluminescense), SO_2 (Ultraviolet), CO_2 (Infrared) and O_2 (Zirconia). The 8000 design makes it well suited for gas turbines and coal fired applications, while it's fast response is ideal for Combustion Turbine optimization. The SCR NOx Monitor system is a cost effective alternative to expensive CEMS. Designed to provide reliable process monitoring solutions before and after the SCR. #### **Features and Benefits** - Silicon Photodiode Sensor for minimal drift or interference - Revolutionary low sample flow eliminates sample conditioning - Low drift and long term stability for accurate process measurements - Remote access for trouble shooting and data retrieval - · Automatic calibration feature for system checks - Insitu response time <5 sec to T90 for feedback control application - Conventional proven dilution technology for handling dirty fuel emissions - Reliable measurements in extremely high dust applications - Simple to navigate operator interface (OIT) with intuitive touch screen technology as a controller panel - Proven low maintenance design Model 8000 Controller Model 8000 Probe ### **Options** - ${\rm CO_2}$ & ${\rm O_2}$ Diluent Measurement - NH₃ Scrubber for SCR applications - Air Cleanup Panel for Clean Dry Instrument Air -40°F dew point - Hastelloy Probe for corrosive & erosive applications ### **Applications** Coal Fired Utilities, SCR Tuning: • NO, CO₂ Gas Turbine & NG Engines: NO_X , O₂ Desulfurization (FGD) Scrubbers: • SO₂ Low NOx Burner Tuning: $\bullet~\mathsf{CO_2}\,,\,\mathsf{O_2}\,,\,\mathsf{NO}$ | Measurement Principle | NO – Chemiluminesence
SO ₂ – UV Absorption | CO ₂ – NDIR
O ₂ – Zirconia | |-------------------------|--|--| | Available Ranges | NO – 0-1000ppm in 50ppm steps
SO ₂ – 0-2000PPM (max) | CO ₂ - 0-100%
O ₂ - 0-25% | | Measurement Uncertainty | +/- 2% for SO ₂
+/- 2% for NO /NO _x , CO ₂ | +/- 1% for O ₂ | | Response Time | T95 < 5 seconds | | | Flue Gas Temperature | < 900°F
1200°F for Turbine Applications | | | Ambient Temperature | -20 to 140°F | | | Digital Interface | ModBus TCP/IP | | | Size | Stainless Steel Controller
16"x16"x12", weight 30 lbs. | Stainless Steel Probe
16"x16"x12", weight 20 lbs. | | Power Requirements | 110Vac, 5A max | | | Probe Lengths | 18" up to 96"
316 S.S. 150# Flange, ANSI 3, 4, 5 or 6 inch | | | Analog Output | 1 x 4-20mA per gas | | | Digital Output | 4 outputs - Fault, Calibration,
Zero gas, Span gas | | | Instrument Air | Clean Dry - 40°F dewpoint,
70-100 p.s.i. | |